skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bosman, Sarah_E_I"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT We present optical and near-infrared (NIR) spectroscopic observations for a sample of 45 quasars at $$6.50 < z \le 7.64$$ with absolute magnitudes at 1450 Å in the range $$-28.82 \le M_{1450} \le -24.13$$ and their composite spectrum. The median redshift and $$M_{1450}$$ of the quasars in the sample are $$z_{\rm {median}}=6.71$$ and $$M_{1450,\rm {median}} \simeq -26.1$$, respectively. The NIR spectra are taken with Echelle spectrographs, complemented with additional data from optical long slit instruments, and then reduced consistently using the open-source Python-based spectroscopic data reduction pipeline PypeIt. The median of the mean signal-to-noise ratios per 110 km s$$^{-1}$$ pixel in the J, H, and K band [median $$\langle \rm {SNR}_{\lambda } \rangle$$] is median $$\langle \rm {SNR}_{J} \rangle =9.7$$, median $$\langle \rm {SNR}_{H} \rangle =10.3$$, and median $$\langle \rm {SNR}_{K} \rangle =11.7$$; demonstrating the good data quality. This work presents the largest medium-/moderate-resolution sample of quasars at $z>6.5$ from ground-based instruments. Despite the diversity in instrumental set-ups and spectral quality, the data set is uniformly processed and well-characterized, making it ideally suited for several scientific goals, including the study of the quasar proximity zones and damping wings, the Ly $$\alpha$$ forest, the intergalactic medium’s metal content, as well as other properties such as the distribution of SMBH masses and Eddington ratios. Our composite spectrum is compared to others at both high and low z from the literature, showing differences in the strengths of many emission lines, probably due to differences in luminosity among the samples, but a consistent continuum slope, which proves that the same spectral features are preserved in quasars at different redshift ranges. 
    more » « less
  2. ABSTRACT We present the first observational measurements of the Lyman-α (Ly α) forest flux autocorrelation functions in ten redshift bins from 5.1 ≤ z ≤ 6.0. We use a sample of 35 quasar sightlines at z > 5.7 from the extended XQR-30 data set; these data have signal-to-noise ratios of >20 per spectral pixel. We carefully account for systematic errors in continuum reconstruction, instrumentation, and contamination by damped Ly α systems. With these measurements, we introduce software tools to generate autocorrelation function measurements from any simulation. Our measurements of the smallest bin of the autocorrelation function increase with redshift when normalizing by the mean flux, 〈F〉. This increase may come from decreasing 〈F〉 or increasing mean free path of hydrogen-ionizing photons, λmfp. Recent work has shown that the autocorrelation function from simulations at z > 5 is sensitive to λmfp, a quantity that contains vital information on the ending of reionization. For an initial comparison, we show our autocorrelation measurements with simulation models for recently measured λmfp values and find good agreements. Further work in modelling and understanding the covariance matrices of the data is necessary to get robust measurements of λmfp from this data. 
    more » « less
  3. Abstract Understanding when and how reionization happened is crucial for studying the early structure formation and the properties of the first galaxies in the Universe. Atz> 5.5, the observed intergalactic medium (IGM) optical depth shows a significant scatter, indicating an inhomogeneous reionization process. However, the nature of the inhomogeneous reionization remains debated. A SPectroscopic survey of biased halos In the Reionization Era (ASPIRE) is a JWST Cycle 1 program that has spectroscopically identified >400 [Oiii] emitters in 25 quasar fields atz> 6.5. Combined with deep ground-based optical spectroscopy of ASPIRE quasars, the ASPIRE program provides the current largest sample for IGM-galaxy connection studies during cosmic reionization. We present the first results of IGM effective optical depth measurements around [Oiii] emitters using 14 ASPIRE quasar fields. We find the IGM transmission is tightly related to reionization era galaxies to the extent that a significant excess of Lyαtransmission exists around [Oiii] emitters. We measure the stacked IGM effective optical depth of IGM patches associated with [Oiii] emitters and find they reach the same IGM effective optical depth at leastdz∼ 0.1 ahead of those IGM patches where no [Oiii] emitters are detected, supporting earlier reionization around [Oiii] emitters. Our results indicate an enhancement in IGM Lyαtransmission around [Oiii] emitters at scales beyond 25h−1cMpc, consistent with the predicted topology of reionization from fluctuating UV background models. 
    more » « less
  4. ABSTRACT Recent quasar absorption line observations suggest that reionization may end as late as $$z \approx 5.3$$. As a means to search for large neutral hydrogen islands at $$z\ \lt\ 6$$, we revisit long dark gaps in the Ly $$\beta$$ forest in Very Large Telescope/X-Shooter and Keck/Echellette Spectrograph and Imager quasar spectra. We stack the Ly $$\alpha$$ forest corresponding to both edges of these Ly $$\beta$$ dark gaps and identify a damping wing-like extended absorption profile. The average redshift of the stacked forest is $z=5.8$. By comparing these observations with reionization simulations, we infer that such a damping wing-like feature can be naturally explained if these gaps are at least partially created by neutral islands. Conversely, simulated dark gaps lacking neutral hydrogen struggle to replicate the observed damping wing features. Furthermore, this damping wing-like profile implies that the volume-averaged neutral hydrogen fraction must be $$\langle x_{\rm H\,{\small {I}}} \rangle \ge 6.1 \pm 3.9~{{\ \rm per\ cent}}$$ at $z = 5.8$. Our results offer robust evidence that reionization extends below $z=6$. 
    more » « less